
domain near the pole of the unit sphere. The wave field is constructed still more simply at 
the unit sphere poles themselves, as (2.8) shows. The deductions made are also carried over 
without difficulty to the case of a rotating uniformly stratified fluid. For this case 
the FFIWO is obtained in [3, 4]. 

The authors are grateful to V. A. Borovikov and E. V. Teodorovich for interesting inter- 
views related to the topic of this paper. 
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INSTABILITY WAVE EXCITATION BY A LOCALIZED VIBRATOR IN THE BOUNDARY LAYER 

A. M. Tumin and A. V. Fedorov UDC 532.526.013 

Modern methods of determining the critical Reynolds numbers for the laminar-turbulent 
boundary layer transition are based on computations of the linear stage of instability wave 
development (Tollmien--Schlichting waves), whose initial amplitudes are determined empirically 
[i, 2]. An analysis of the possible excitation mechanism for Tollmien--Schlichting (T--S) waves 
by external perturbations is needed to construct closed algorithms to compute the develop- 
ment of these waves. On the other hand, the problem of boundary layer susceptibility to ex- 
ternal effects is closely associated with questions of flow laminarization on aircraft ve- 
hicles. 

It is well known that spatially localized, external perturbations that are periodic in 
time excite T--S waves effectively [1-3]. Under real flight conditions and in wind tunnel 
tests the source of such perturbations might be the vibration of the surface being stream- 
lined. Experiments in [4, 5] indicate the close relationship between the origination of in- 
stability and the characteristics of model vibration. 

A theoretical analysis of the perturbations excited by vibrations of a surface being 
streamlined in the boundary layer was developed in [6-11]. The first mathematical model re- 
lated to T--S wave generation by a localized vibrator was constructed by Gaster [6]~ A vi- 
brator in sub- and supersonic boundary layers was examined in [7-9]. The analysis was per- 
formed within the framework of a three-layer asymptotic model under the assumption that the 
characteristic scales of the problem correspond to the neighborhood of the lower branch of 
the neutral curve. Asymptotic expressions are obtained for the longwave pressure perturba- 
tions excited in the neighborhood of the vibrating section of the surface. In particular, 
the amplitude of the damped T--S wave is determined. However, the problem of excitation of 
growing instability waves emerged beyond the framework of the mathematical model used. In 
this connection, a postulate was proposed in [i0] that permits determination of the amplitude 
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of an exponentially increasing T--S wave. The need for the postulate vanishes if a vibrator 

is considered that starts to vibrate at a certain initial time t = 0 [6], or the problem is 

solved in large length scales with the flow in the boundary layer not being parallel taken 
into account (see below). 

The resonance mode of T--S wave excitation by a vibration wave traveling over the 
streamlined surface is examined in [ii]. The analysis is performed by using an eigenfunc- 
tion expansion of the solution of the linearized Navier--Stokes equations. Here the flow 
not being parallel in a real boundary layer was taken into account. The high efficiency of 
resonance excitation of T--S waves was detected. 

To confirm the theoretical results, an experimental investigation was performed on the 
perturbations excited by a localized vibrator in the boundary layer on a flat plate [12]. 

In this paper instability wave excitation by a localized vibrator is analyzed on the 
basis of the results in [Ii]. Theory is compared with experiment. The amplitudes of the 
instability waves being excited are computed for the Mach numbers M = 0.2-0.8. 

i. Let us consider the flow in a two-dimensional boundary layer. For simplicity in the 

exposition, we consider the flow incompressible. The nonessential distinctions that occur when 
taking account of compressibility of the medium are indicated below. Let x be the downstream 
distance from the model leading edge along the streamlined surface, and y the distance along 
the normal therefrom. A vibrator oscillating at the frequency ~ (Fig. i) is installed at a 
distance L from the leading edge. We select the characteristic scales: the distance X ~ L 
along the x axis, (~X/U~) ~2 along the y axis, where v~, U~ are the kinematic visFosity coef- 
ficient and the free-stream velocity. The time is measured in the units (,J~X/U~) v2, the pres- 
sure in the units p~U~, where p~ is the density. 

We assume that the main flow is weakly inhomogeneous in the x direction with longitudi- 

nal U and normal V* velocity components satisfying the relations 

U = U(x, y), V* = ~V(x, y), ~ = R -1 = ( ~ |  X )  112 << i .  

L e t  t h e  s u r f a c e  v i b r a t i o n s  b e  d e s c r i b e d  b y  t h e  e q u a t i o n  

Yw (s,[t) = Bea l  [a] (s) e -~~  s = e -~  (x - -  x . ) ,  ] (s) = 0 ( l ) ,  

w h e r e  x ,  = L /X  i s  t h e  c o o r d i n a t e  o f  t h e  v i b r a t o r  c e n t e r ,  and  f ( s )  i s  t h e  v i b r a t o r  s h a p e  l o c a l -  
i z e d  in x in the scale ~cL. It is assumed that the amplitude of the vibrations is much less 
than the thickness of the viscous near-wall layer a << (wR) -~/2. In this case the perturbations 

excited by the vibrator in the boundary layer are described by the linearized Navier--Stokes 

equations [7-10]. 

We introduce the vector function Q(x, y, t): Q~, Q2, Q3 are perturbations of the x 

velocity component, the pressure, and the y velocity component, respectively, Q4 = ~Q~/~y - 

~Q3/~x. For fixed-frequency perturbations 

Q(x~ y~ t) = a R e a l [ A ( x ,  y)e-~et]~  

w h e r e  A ( x ,  y)  i s  t h e  c o m p l e x  a m p l i t u d e  s a t i s f y i n g  t h e  l i n e a r i z e d  N a v i e r - - S t o k e s  e q u a t i o n s  i n  
which a Fourier transformation in the time has been executed [11-13]: 

OA/Og - -  H1A = eH2OA/Ox + ella A .  ( 1 . 1 )  

The e x p l i c i t  f o r m  o f  t h e  m a t r i c e s  H~ and  H2 i s  g i v e n  i n  [ 1 1 ] .  The m a t r i x - o p e r a t o r  H3 
contains the terms ~U/~x, V, ~V/~y, related to the main flow not being parallel. 

The following boundary conditions are satisfied for an impermeable surface 

Real[aAl(x , ym)e - ~ t ]  -~  U(x, Y w ) =  O, (1.2) 

Real[aAa(x , y ~ ) e  - i o t ]  @ V*(x, g~) - -  OgJOt = O. 

E x p a n d i n g  ( 1 . 2 )  i n  a s e r i e s  i n  t h e  n e i g h b o r h o o d  o f  y = O, we h a v e  t o  O(a  2) + O ( z a )  a c -  

c u r a c y  
, , OU A~(x,O) = - -  U~l(s),  A 3 ( x , O ) = - i ~  l(s),  U ~ = ~ ( x , O ) .  ( 1 . 3 )  

As y § ~, boundedness is assumed for the perturbations 

I A I <  oo,  y - ) -  oo .  (1.4) 
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Fig. 1 

i 

/ 
Fig. 2 

We give the initial data 

A(xo, g) = Ao(V) ( 1 . 5 )  

in the section x = Xo sufficiently far upstream of the vibrator. 

In general, the mixed problem (i.i), (1.3)-(1.5) is incorrect. It is necessary that Ao 
allow construction of a solution with a finite growth index downstream [ii, 14]. 

2. We represent the vibrator shape f(s) as a Fourier integral in the wave numbers 

/ = j" p exp do: . (2.1) 

The shape f = p(~v)exp[is-~v(X- x,)] of a vibrating surface corresponding to one har- 
monic from the integral (2.1) is examined in [Ii]. It is shown that in this case the solution 

A(x, y, ~v) is represented in the form of an expansion in a biorthogonal system of eigenfunc- 
tions {Am, B~}, supplemented by the inhomogeneous solution for y = 0 

A (x, V, c%) = ~ '  c= (z) A= (z, V) e '~=(:') + Ao (x, V) e ~(=), 
q,  

x g 

x o x .  

Analysis of the spectrum and fundamental properties of ~ the eigenfunctions is carried out 
in [ii, 14]. The orthogonality relationships 

<H~A~, B~> = A ~ ,  
4 

<//~A, B> = .t (H~A, B) dg, (It~A, B) = ~ H~JA~B, 
o i , j=l  

are satisfied, where k~B is the Kronecker symbol when at least one of the eigenvalues belongs 
to adiscrete spectrum, ka$ = 6(~ -- B) is the delta function if ~, B refer to the continuous 
spectrum (the upper bar denotes the complex conjugate). 

The vector function Av(x , y) is a solution of the system 

0A~ 
o'--7 - -  HxA~ = i~T /2A~'  A ~  = - -  U~p ( ~ ) ,  A~3 = - -  i~p  ( ~ ) ,  g = 0; IAo ] - +  0, y - +  oo 

and describes the perturbation induced in a locally homogeneous flow by a vibration wave with 
wave number ~v" The following relationship holds [ii] 

<H2A~, B~>i(~, - -  ~) -t- (Ao, B~)v= o = 0. ( 2 .2 )  

Let the coordinate x~ of the center of the vibrator agree with the point Xl.s. of loss 
of stability of the T--S wave (a generalization is given below for a vibrator ]ncated to the 
right or left of Xl.s. ). Then a resonance mode of T--S wave excitation ~v = ~v* = ~TS(X*) 
is possible at the point x,, where ~TS(X,) is the wave number for the T--S wave. The 
perturbation amplitude A(x, y, ~v*) has an asymptotic for ~ § O, x -- x, >> ~x, [ii]: 
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A (x, y, a~.) = D (x, e) ATS (x,/4)i 

~ ~v -- 05TS (Xv - -  ~ZTS D (x, e) = i i dx dx L a--v ---s dx 
x 0 x 0 x 0 

where ATS is the eigenfunction of the T--S wave 

WTS, TS ~-----<tt20ATs/Ox, B 2 s > -  <H3ATs, BTz>. 

The small parameter ~ in the eikonal ~=i~ e - l ( a v - - a T s )  dx permits determination of the asymp- 

x0 

totic of the integral in (2.3) by the saddle-point method. The amplitude ~TS of the T--S wave 
excited at resonance is determined by the neighborhood of the saddle point x, and has the 
form [Ii] 

lliWS (X, y, a~.)  = ap (a~.) gATse Frs ,  

] / :  2~ , io)BTsa),,y=o eiq' 0 (81/'2)~ ' (2.4) g =  + + 

t-g~x 7 ,  

w h e r e  ~ i s  a r e a l  c o n s t a n t  d e f i n e d  by  t h e  s e l e c t i o n  o f  t h e  b r a n c h  o f  t h e  r o o t  i n  ( 2 . 4 ) .  The 
q u a n t i t i e s  w i t h  t h e  a s t e r i s k  ( e )  s u b s c r i p t  a r e  e v a l u a t e d  a t  t h e  p o i n t  x e .  

F o r  a s m a l l  d e t u n i n g  f r o m  r e s o n a n c e  zic~ = a v --  a T S ( X ,  ) , t h e  s a d d l e  p o i n t  z ,  d e f i n e d  by  t h e  
e q u a t i o n  a v --  aTS = 0 w i l l  b e  c o m p l e x  

A~ 

\ - d ~ z  J ,  
Let us continue the total solution A(x, y, ~v) in a small domain of the complex z plane includ- 
ing /~s, the neighborhood of the saddle point z, (it is assumed that A(z, y, ~v) is analytic in 
this domain). We expand A(z, y, ~v) in the neighborhood of z, exactly as was done for x, in 
[Ii], and we evaluate D(z, g) by the saddle-point method. We consequently obtain that the am- 
plitude of the excited T--S wave is 

( % -  
(I)Ts (x, y, r = ap (av) g exp 2~ (--~aTS-'- ~- ] ~ ~TS. ( 2 . 5 )  

~, ~ ) , J  

Integrating ~TS(X, y, ~v) over all ~v belonging to the resonance interaction domain l~v -- 
~v*] ~ r for x -- x, >> /~x, we have an asymptotic estimate for the total amplitude of 
the instability wave excited by a localized vibrator 

~TS2 = 2 n a p  ( ~ , )  (U~BTs~ + i~BTs,),.v=o ATse FTs, ( 2 . 6 )  

where +~ 

p (~v,) = ~ ~ / (s) e ds. 

If the vibrator is shifted from the point of loss of stability, ~v* will be complex. 
We continue A(x, y, a v) into the domain of the complex ~v* plane including /~, the neighbor- 
hood of the point ~v* = ~TS (x*)- It is easy to show that the relationships (2.4) and (2.5) 
do not change. To evaluate the total amplitude we deform the contour of integration in av, 
so that it would pass through the saddle point ~v* along the line of steepest descent. We 
consequently obtain that as in the case of real av,, ~TS~ is determined by the expression 

(2.6). 

Therefore, generation of a T--S wave is localized in the flow interval Ix -- x,I ~ r 
and occurs in a narrow band of vibrator wave numbers Iev -- ~v*[ ~ /7~v* concentrated around 
the resonance value ~v* = ~TS (x*)" The instability wave being excited for x -- x, >> /~x, 
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is developed according to the solitary wave laws. Since the excitation is localized in x, 
the relationship (2.6) is valid for boundary layers on bodies of sufficiently smooth shape 
with the characteristic scale L >> (v~X/U~)~. 

3. Taking account of the weak inhomogeneity in the main flow is the essence of the 
analysis in Sec. 2. The problem of perturbations excited by a vibrator in a plane-parallel 
boundary layer was solved by asymptotic methods in [9]. As a comparison with the results in 

[9], we examine this problem by using the expansion in a biorthogonal system of eigenfunc- 
tions {A~, B~}. 

Let the vibrator be on the bottom of a plane-parallel boundary layer corresponding to 
the Reynolds number Re = (U~X/v~)9 '2. We locate the center of the vibrator at the point x, = 
0. As in [9], we require that IAI + 0, y § ~, x § In a certain section x = xl downstream 
from the vibrating section of the surface, the perturbation amplitude AI = A(xl, y) satis- 
fies the homogeneous boundary conditions on the wall At(0) = A3(0) and the boundedness con- 
dition IA] < ~, y + ~. Then A(x, y) can be expanded in a complete system of eigenfunctions 
{A~, B~} in the domain x > xl > 0 [14]: 

A (x, y) = ~ <HzA I, B=v> exp [ is-lay (x -- xl) ] A= v (y) + 

+ Z <H A1, B j> exp[is-% (x-- xl)] (y)ak, 
3O 

where ~ is the summation over the discrete spectrum, and ~ is the sum of integrals over the 
J 

continuous spectrum branches ej = ~j(k), 0 < k < ~. 

Let us expand A(x, y) in a Fourier integral in the wave numbers ~v: 

A (x: ~) = ~ A v (~, ~ oxp [is--I~vx] d~ v. 

T a k i n g  a c c o u n t  o f  ( 2 . 1 ) ,  we h a v e  f rom ( 2 . 2 )  
+~ 

' ~ ,P(~ (3.1) 

We examine the case of subcritical frequencies of the vibrator oscillations for whieh 
all the discrete spectrum waves damp out downstream. To evaluate the integral in (3.1), we 
close the contour of integration by the arc of a circle in the upper half-plane of the com- 
plex ~o plane. Allowing the radius of the circle to become infinite, and taking into aecount 
that x~ > 0, we find 

.O 

<H2A1, B~> (Uw ~ + i~Ba3)y=o 2ap (~) e , 

where ~ belongs to the spectrum located in the upper half-plane. 

Therefore, the perturbations being excited downstream by a vibrator for x > xl > 0 are 

A(x, y) : E' 2g~(gv)(UwB~vx.+ i~B~v3)y=oAav 8~x + 
.~jx 

~ 0  

where ~'~ .~' denote the summation over the discrete spectrum, and over branches of the contin- 

uous spectrum located in the upper half-plane. In particular, we obtain a relationship that 
agrees with the principal approximation (2.6) for the amplitude of the T--S wave being excited, 
when the flow is weakly inhomogeneous: 

i~TS x 
OTSZ = 2nap (aTS) (USBTsl + i~BTs3)y=o Arse s ( 3 . 2 )  

An awkward a n a l y s i s  e x e c u t e d  by t h e  method o f  m e r g e a b l e  a s y m p t o t i c  e x p a n s i o n s  w i t h i n  t h e  
f r a m e w o r k  of  t he  model  [9] showed t h a t  t he  a m p l i t u d e  ( 3 . 2 )  o f  t he  T--S wave a g r e e s  i d e n t i c a l l y  
w i t h  t h e  r e s u l t  i n  [ 9 ] .  
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TABLE i 

M F.10' 

0,2 20 
- -  40 
- -  60 
0,4 20 

- -  40 
- -  6 0  

Re, 

1020 
685 
550 

t010 
665 
540 

~TS" I0' 

7,27 
8,84 

t0,04 
7,02 
8,40 
9,64 

(qra ta).iOi[ M 

5,79 0,6 
6,46 
6,92 
5,37 ~,8 
5,95 
6,42 

F.  t 0 '  

20 
40 
60 
20 
40 
60 

Re,~ t~Ts'iOZ 

960 6,45 
645 7,85 
520 8,97 
900 5,73 
6t5 7,t2 
490 8,06 

(%,/<,).1o, 

4,67 
5,23 
5,65 
3,81 
4,38 
4,72 

As the frequency of vibrator oscillations increases from sub- to post-critical frequen- 
cies, the eigenvalue of the T--S wave eTS goes from the upper half-plane of the complex ~ plane 
into the lower (the dashed line in Fig. 2). In this case, a vibrator starting to oscillate 
at the initial time t = 0 as in the model problem in [6] t must be considered for the correct 
selection of the contour of integration. 

The contribution from the pole e = ~TS must be included in the solution for x > 0 by 
deforming the contour of integration as in Fig. 2. This contour selection rule is in agree- 
ment with that postulated in [i0]. Let us note that taking account of the main flow not being 
parallel permits formulating the problem with initial data for x = Xo in large length scales 
and removes the question of the passage from sub- to post-critical frequencies. 

4. It is shown in [ii] that the relationships (2.5) and (2.6) do not change for a bound- 

ary layer in a compressible gas if it is considered that the first and third components of the 
vector A for the perturbation amplitude in a compressible gas correspond to perturbations in 
the velocity x- and y-components. 

The relationships (2.6) and (3.2) depend on normalization of the eigenfunctions ATS , BTS- 

To obtain invariant relations, the factor STSB/<H2ATS, BTS > must be inserted in these expres- 
sions, where STS is the perturbation amplitude of the physical quantity of interest to us, com- 
puted along the vector ATS. In the computations STS equals the maximum magnitude of the per- 

turbation in y for the mass flow rate modulus qTS(X). Then the amplitude of the instability 
wave excited by a localized vibrator is 

qm(x) =aqTS(X) I2~P(=Ts)(U;BTSI<H~ATs, BT-~*+i~BTs3)*'V=~ . (4.1) 

Numerical computations were performed by using (4.1) for a vibrator on a heat-insulated 
plate around which flows a gas with adiabatic index 1.41, and Prandtl number 0.72. The Mach 
number in the free stream varied in the range M = 0.2-0.8, the stagnation temperature equaled 
310~ and the viscosity coefficient was computed by the Sutherland formula. 

The results of computing the perturbation amplitudes for the mass flow rate qm(x,) in a 

T--S wave excited by a vibrator with 2~O(ev,) = 1 localized near the point of loss of stability x, 
are given in the table where values of ~TS and Re, corresponding to x = x, are also presented. 
The characteristic scale X in the computations is equal to the distance between the nose of 

the plate and the center of the vibrator such that Re = Re,. The data in the table indicate 
that because of the narrowness of the resonance interaction domain in the wave numbers ~v, 
the amplitude of a T--S wave generated by a local vibrator is two orders of magnitude less than 

the corresponding amplitude for the resonance excitation mode on a solitary vibration wave 

[li]. 

To compare theory and experiment [12] I computations were performed for the r.m.s, pulsa- 
tions of the x-component of the velocity uTS(X) in an excited T--S wave, corresponding to 
maximal values in y. The calculations were carried out for Re = 502 at the frequency param- 
eters F = (50-120)'i0 -6 (F = 2~f~/U~, f is the perturbation frequency in Hz). In conformity 
with experiment, the shape of the vibrator was given as a trapezoid with lower base I = 28 mm 

i 

and upper base equal to 2/3Z. Shown in Fig. 3 is the dependence of UTS(X*) on F for the di- 
mensional pulsation amplitude a = I0 ~m. As in the experiment, the amplitude of the excited 
T--S wave depends weakly on the frequency parameter for the sub- and post-critical frequencies 

(the critical value is F = 70"10-6). 

Presented in Fig. 4 is the comparison between theoretical computations (curve i) and ex- 
periment (curve 2), for the vibrator oscillation frequency f = 70 Hz (F = 120"10-6). The ab- 

tThe exact analysis of the problem of a vibrator starting to oscillate at the time t = 0 is 

executed by E. D. Terent'ev. 
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solute value of the pulsations is referred to the maximal value in x, or u~ = 0.13%, achieve- 
able for x = 510 mm [12]; the vibration amplitude is a = i0 ~m. In the domain x ~ 550 mm 
where the T--S wave is extracted from the total signal, the theory is in good agreement with 
experimental data. 

It follows from the computations that to excite instability waves with "dangerous" (from 
the transition viewpoint) frequencies and with initial amplitudes ~i0-2% very small vibrations 
of the streamlined surface at the same frequency with amplitudes of ~i ~m are sufficient. 

The authors are grateful to L. P. Voinov and V. N. Zhigulev for constant attention to 
the research and useful discussions of the results. 
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